

The Celtic Sea Trout Project 2009-2013

North Wales Fisheries Conference

Nigel Milner APEM Ltd and Bangor University n.mlner@apemltd.co.uk

Introduction to the CSTP

BACKGROUND

- Historical neglect vs salmon
- Stock collapse focused minds & funded R&D
- 2004 Cardiff Symposium review Gaps
- Interreg IVA funded cross-border CSTP

AIMS

- Marine distribution, stock identity & ecology
- Life history variation, description & causes
- Long term collaboration + awareness

APPLICATIONS

- Stock assessment, mixed stocks fisheries
- Responses to pressures.. past, present and future
- Managing risks from marine developments
- Bio-indicator role across FW-transitional-coastal habitats

A basic question... why do sea trout stocks vary regionally and over time?

Partial migration and anadromy : "To Sea or Not to Sea?"

4yr old "brown trout" (400eggs)

Smolting/Migration

Benefits (eggs) vs Risks (death)

4yr old "sea trout" (6,000eggs) Photo: Ian Davidson, DSAP

Partial migration in trout

Performance at sea affects age structures of sea trout stocks and fisheries

Question 1: why return from sea? (Ans: spawning, complete the life cycle) Question 2: when to return? (Ans: maturation...survival, growth??? ...traits related to marine habitat) Question 3: what determine proportions of sea ages? (Ans: ???LH tactics that maximise potential eggs)

Sampling (2009-2012)

Marine (post-smolts and adults):

- Beaches, estuaries, coastal, offshore
- Trawl, seine, rods
- 1,367 scale sets

Rivers (juveniles and adults):

- Angler samples
- Rod catch statistics
- Traps
- 5,538 adult fish scale sets
- Electro-fishing 100 rivers, (for genetics and microchemistry)

Marine habitats are highly structured

Currents

July'12

October '12

Sea temperature (NB mean and range greater in east sea board)

Bathymetry

Seascape

Prey (sand eel) habitat

Prey abundance

Results

Trends in abundance and stock composition

Regional variation in life histories

Feeding

Movements and exchange

Synchrony in catch trends, 1994-2011

- Mean catch for each country/region
- Strong temporal coherence (Vt = 34%)
- Common factors acting on stock?
- Effort analysis in E&W showed very low coherence, but high in catch and cpld

Long term changes in catches and size composition in 5 Welsh rivers, 1976-2007

- ➢ 0.8kg = "whitling" (n.0+)
- Increasing abundance and % of whitling
- Reduction in N and % of larger fish in some rivers
- Evidence of life history change
- Time of 1st maturation, can't exclude reduction in survival

Temporal variation in marine growth

- Historical data (eastern sea board)
- Size of whitling increased 1923-2000
- Mixed year and latitude effects

CITP traps tils
CIT

Temp data: MAFF/Cefas

Results

> Trends in abundance and stock composition

- Regional variation in life histories
- Feeding
- Movements and exchange

Variation in sea ages of sea trout

(from scale reading)

Spatial variation in marine growth, mean length(mm) at age n.0+

Spatial variation in survival (%)

Regional summary of growth and survival (selected by tree regression)

Life history responses to 1st year marine growth

Is earlier maturation a response to maximise reproductive opportunity in the face of marine environmental influence on growth and survival?

Results

> Trends in abundance and stock composition

- Regional variation in life histories
- Feeding
- Movements and exchange

Adult sea trout prefer to eat fish

Regional variation

Prey (sprat) abundance

Results

> Trends in abundance and stock composition

Regional variation in life histories

Feeding

Movements and exchange

Hydrodynamic Modelling (Cefas)

General Estuarine Transport Model (GETM), simulates particle (="fish") movements, run from April 1st

Slaney

Tywi

Genetic and microchemistry/radio isotope assignment of marine-caught fish to regions

Microchem origins based on 36 rivers

δ15N suggested mainly coastal residency

9 putative genetic regions identified by juvenile samples, 99 rivers

Overall: most fish remain "local"; evidence of some extensive exchange, can't quantify due to small sample sizes

Conclusions

LIFE HISTORIES and MARINE ECOLOGY

- Evidence of synchronous variation indicates response to common marine factor/s (can't yet rule out FW factors too)
- Stock structure variation reflects shifts in time of 1st return, likely due to growth and survival
- Regional growth variation linked to temperature (+ food?)......HABITAT
- Long term temporal growth variation cause remains uncertain (probably climate)
- Consistent with limited dispersal, reflecting marine hydro-graphic and environmental factors.
- BUT some extensive dispersal demonstrated by genetics, microchemistry and modelling

MANAGEMENT & MONITORING

- Broad-scale conservation: does partial synchrony imply meta-population effects, conferring resilience and stability on individual rivers? (role of small streams?)
- Cross-border management of marine phase is indicated by the synchrony and partial dispersal
- Catch recording is weak and a major limitation: size data, fishing effort
- Marine food chain is important for sea trout, but key indicators are poorly monitored
- Marine habitat monitoring and protection are important for sea trout

Thanks to all the sponsors and many co-workers

... and many '00s of anglers

THE RIVER ANNAN DISTRICT SALMON FISHERY BOARD

Noddir gan Lywodraeth Cynullad Cymru Sponsored by Welsh Assembly Government

s s

Ireland's EU Structural Funds Programmes 2007 - 2013

Co-funded by the Irish Government and the European Union

